Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries.
نویسندگان
چکیده
One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.
منابع مشابه
TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries.
As a competitor for Li4Ti5O12 with a higher capacity and extreme safety, monoclinic TiNb2O7 has been considered as a promising anode material for next-generation high power lithium ion batteries. However, TiNb2O7 suffers from low electronic conductivity and ionic conductivity, which restricts the electrochemical kinetics. Herein, a facile and advanced architecture design of hierarchical TiNb2O7...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملMorphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries.
Nanostructured CuO anode materials with controllable morphologies have been successfully synthesized via a facile and environmentally friendly approach in the absence of any toxic surfactants or templates. In particular, leaf-like CuO, oatmeal-like CuO, and hollow-spherical CuO were obtained by changing the ligand agents. The structures and electrochemical performance of these as-prepared CuO w...
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملFacile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
Various CuO nanostructures have been well studied as anode materials for lithium ion batteries (LIBs); however, there are few reports on the synthesis of porous CuO nanostructures used for anode materials, especially one-dimensional (1D) porous CuO. In this work, novel 1D highly porous CuO nanorods with tunable porous size were synthesized in large-quantities by a new, friendly, but very simple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical communications
دوره 51 97 شماره
صفحات -
تاریخ انتشار 2015